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ABSTRACT 

Fault detection and diagnosis (FDD) are paramount in maintaining the operational integrity and efficiency of 

mechanical systems across various industries. Traditional FDD methods, heavily reliant on manual inspections, 

scheduled maintenance, and simple threshold-based algorithms, are increasingly unable to meet the demands of 

modern, complex systems. These methods often lead to significant downtime, high maintenance costs, and in 

some cases, catastrophic failures due to their reactive nature and inability to predict and prevent faults before 

they occur. Furthermore, traditional approaches struggle with the analysis of large-scale data from sensors, 

leading to delayed or inaccurate fault detection. The advent of machine learning (ML) offers a revolutionary 

solution to these challenges, bringing forth the ability to analyze vast amounts of data in real-time, learn from 

historical trends, and predict future failures with high accuracy. ML algorithms can process and interpret data 

from a multitude of sensors embedded in mechanical systems, enabling predictive maintenance and 

significantly improving system reliability and efficiency. Unlike traditional methods, ML-based FDD 

approaches are dynamic, learning continuously from new data, and adapting to changes in system behavior 

without explicit reprogramming. This adaptability is crucial for the longevity and sustainability of mechanical 

systems in an era of rapid technological advancements. 

This paper delves into the integration of machine learning in fault detection and diagnosis, presenting a 

comprehensive study that not only highlights the shortcomings of traditional FDD methods but also showcases 

the superiority of ML-based approaches through theoretical exploration, methodology, and case studies. We 

examine various ML algorithms tailored to different types of faults and mechanical systems, providing insights 

into their implementation and effectiveness. Our research contributes to the existing body of knowledge by 

offering a detailed comparison of traditional and ML-based FDD methods, identifying best practices for 

implementing ML in mechanical systems, and outlining future directions for research. By bridging the gap 

between conventional methods and the potential of machine learning, this paper aims to pave the way for more 

reliable, efficient, and intelligent maintenance strategies in the mechanical industry. 

Keywords: Machine Learning (ML), Fault Detection and Diagnosis (FDD), Predictive Maintenance, Mechanical 

Systems, Supervised Learning,  Unsupervised Learning,  Deep Learning,  Sensor,  Data Analysis,  Operational 

Efficiency,  Anomaly Detection,  Data Pre-processing.  
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I. INTRODUCTION 

 

The maintenance of mechanical systems is a critical 

aspect of ensuring the operational efficiency, safety, 

and longevity of machinery across various industries, 

from manufacturing and automotive to energy and 

aerospace. Mechanical systems, characterized by their 

intricate assemblies and reliance on precise operations, 

are prone to wear and tear, necessitating regular 

monitoring and maintenance[1]. However, traditional 

fault detection and diagnosis (FDD) methods often 

face challenges such as the need for continuous 

human supervision, the inability to detect subtle faults 

before they escalate, and the reliance on scheduled 

maintenance that may not align with the actual 

condition of the machinery[2]. These challenges not 

only increase the risk of unexpected failures and 

downtime but also result in higher maintenance costs 

and reduced system life spans. 

In recent years, machine learning (ML) has emerged 

as a transformative technology in the realm of 

predictive maintenance, offering a new approach to 

FDD in mechanical systems. ML's capability to 

analyze vast amounts of data from sensors embedded 

in machinery, learn from historical performance, and 

predict future faults offers a proactive maintenance 

strategy[3]. Unlike traditional methods, ML-based 

FDD can detect anomalies and predict potential 

failures well before they occur, allowing for timely 

intervention and preventing costly downtime[4]. This 

shift from reactive to predictive maintenance 

represents a significant advancement in the 

management of mechanical systems. 

The motivation behind integrating ML into FDD 

processes is driven by the need to overcome the 

limitations of conventional approaches and harness 

the potential of data-driven insights for improved 

maintenance decisions[5]. By leveraging ML 

algorithms, it is possible to achieve greater accuracy in 

fault detection, reduce the frequency of unnecessary 

maintenance, and extend the operational life of 

machinery. Furthermore, ML's ability to adapt to 

changing conditions and learn from new data ensures 

that the FDD process becomes more efficient and 

effective over time. 

The scope of this research paper encompasses a 

comprehensive examination of the application of ML 

techniques to FDD in mechanical systems. It aims to: 

 

❖ Evaluate the effectiveness of various ML 

algorithms in detecting and diagnosing faults in 

mechanical systems.  

❖ Compare the performance of ML-based FDD 

methods against traditional approaches. 

❖ Identify challenges and limitations in the 

current application of ML to FDD and propose 

solutions.  

❖ Highlight the practical implications of 

implementing ML-based FDD in industrial 

settings and discuss future research directions. 

 

II. LITERATURE REVIEW 

 

The foundational approaches to fault detection and 

diagnosis (FDD) in mechanical systems have 

historically relied on a blend of physical model-based 

methods, statistical analysis, and signal processing 

techniques. Physical models, leveraging the 

mathematical representation of systems, have been 

instrumental in understanding system behaviors 

under various operating conditions[6]. Statistical 

methods, including statistical process control (SPC), 

have provided a framework for detecting outliers and 

shifts in system performance metrics. Signal 

processing, particularly the analysis of vibration 

signals[7], has been a cornerstone in diagnosing 

mechanical faults. Studies such as those by Smith and 

Hawkins (2010) and Patel and Singh (2012) have 

highlighted the effectiveness of these methods in 

specific applications but also underscored their 

limitations, including high dependency on expert 

knowledge, difficulty in adapting to new or evolving 

system configurations, and challenges in handling 

noisy or incomplete data. The transition from 
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traditional FDD methods to machine learning (ML)-

based approaches began as computational capabilities 

expanded and data availability increased. Early 

applications of ML in FDD explored supervised 

learning algorithms, such as decision trees and support 

vector machines, for classifying system states based on 

feature-engineered data. Seminal works by [8]  and [9] 

demonstrated the potential of ML to improve fault 

detection rates and reduce false alarm rates in complex 

systems, such as wind turbines and automotive 

engines. These studies laid the groundwork for ML in 

FDD, proving that ML could outperform traditional 

methods in accuracy and efficiency. However, they 

also highlighted challenges, including the need for 

large labeled datasets for training and the difficulty of 

interpreting ML models. 

Recent advancements in ML for FDD have been 

driven by the advent of deep learning and 

unsupervised learning techniques, which have 

significantly expanded the capabilities of FDD systems. 

Deep learning, utilizing architectures such as 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), has excelled in 

feature extraction and sequence modeling, enabling 

the direct processing of raw sensor data. Studies by [10] 

and [11] have showcased the application of deep 

learning in real-time fault diagnosis, achieving 

unprecedented accuracy levels in complex systems, 

including aerospace engines and manufacturing 

equipment. Unsupervised learning approaches, such as 

autoencoders, have been explored for anomaly 

detection in scenarios where labeled data is scarce[12]. 

These advancements underscore the ability of ML to 

handle high-dimensional data and learn complex 

representations, marking a significant leap over 

traditional and early ML methods. 

Despite these advancements, the literature review 

reveals critical gaps in the application of ML to FDD. 

One significant issue is the dependency on large 

volumes of high-quality labeled data, which is not 

always available or feasible to obtain in industrial 

settings[13]. Moreover, the interpretability of complex 

ML models remains a challenge, limiting their 

acceptance and application in safety-critical systems 

where understanding the rationale behind diagnoses is 

crucial. Additionally, the integration of ML-based 

FDD systems into existing industrial infrastructure 

requires overcoming significant technical and 

organizational barriers[14]. Future research needs to 

address these gaps by developing more robust 

unsupervised and semi-supervised learning models, 

improving model interpretability, and devising 

effective strategies for the integration of ML into 

legacy systems. The exploration of transfer learning 

and domain adaptation techniques presents a 

promising avenue for utilizing ML in FDD across 

diverse mechanical systems with limited labeled data. 

 

III. THEORETICAL BACKGROUND 

 

The effective application of machine learning (ML) for 

fault detection and diagnosis (FDD) in mechanical 

systems requires a solid understanding of both ML 

principles and mechanical engineering concepts. This 

section provides an overview of these foundational 

elements, emphasizing their relevance and application 

in FDD. 

Machine Learning Concepts 

Supervised Learning: Supervised learning involves 

training an algorithm on a labeled dataset, where the 

input features and the corresponding outputs (labels) 

are known. This method is particularly useful in FDD 

for classifying the state of a mechanical system as 

normal or faulty based on historical data[15]. For 

instance, a study might utilize vibration signal data 

from an aircraft engine, labeled with 'normal' and 

'faulty' states, to train a supervised model that can 

predict future failures. 

Unsupervised Learning: Unlike supervised learning, 

unsupervised learning algorithms analyze data 

without labeled responses, identifying patterns or 

anomalies within the dataset. This approach is 

valuable in FDD for detecting novel or unforeseen 

faults. Autoencoders, for instance, can reconstruct 
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normal operational data; deviations in the 

reconstruction error can indicate anomalies, 

suggesting potential faults. 

Deep Learning: A subset of ML, deep learning utilizes 

neural networks with many layers (deep networks) to 

learn complex patterns in large datasets. 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) are powerful deep 

learning models for processing spatial and temporal 

data, respectively[16]. In FDD, CNNs can analyze 

images from surveillance cameras to detect physical 

anomalies in machinery, while RNNs can process 

time-series data from sensors to predict equipment 

failures over time. 

Mechanical Engineering Principles 

Vibration Analysis: Vibration analysis is a key 

technique in mechanical engineering for monitoring 

the condition of machinery and equipment. It 

involves measuring the vibration levels and patterns 

of machines to identify imbalances, misalignments, or 

other issues that could lead to failure[17]. ML can 

enhance vibration analysis by automating the 

identification of specific vibration signatures 

associated with different types of faults. 

Thermodynamics: Thermodynamics principles, 

particularly those related to heat transfer and energy 

conversion, are crucial for diagnosing issues in systems 

like engines and turbines. ML models can predict 

thermal-related failures by analyzing temperature data 

in conjunction with other operational parameters. 

Fluid Mechanics: In systems where fluid flow is 

critical (e.g., pumps, compressors), understanding 

fluid mechanics is essential for FDD. ML can help 

predict failures related to fluid dynamics by analyzing 

pressure, flow rate, and temperature data, identifying 

patterns that precede common faults like leaks or 

blockages. 

Mathematical Foundations 

While the mathematical intricacies of ML algorithms 

can be complex, a basic understanding of probability, 

statistics, and linear algebra underpins most models. 

For instance, the operation of neural networks relies 

on matrix operations to process input data and adjust 

weights during training, optimizing the network to 

accurately predict outputs[18]. The training process 

itself often involves optimization techniques like 

gradient descent, which iteratively adjusts the model 

parameters to minimize the difference between the 

predicted and actual values. 

The integration of ML concepts and mechanical 

engineering principles in FDD represents a 

multidisciplinary approach to predictive maintenance. 

By leveraging data-driven models, engineers can not 

only detect existing faults but also predict future 

issues, reducing downtime and extending the lifespan 

of mechanical systems[19]. Existing studies and 

applications across industries—from aerospace to 

manufacturing—underscore the potential of ML to 

transform traditional FDD methods, offering more 

reliable[20], efficient, and proactive maintenance 

strategies. 

 

IV. METHODOLOGY 

 

The primary objective of this study is to leverage 

machine learning (ML) techniques for the effective 

fault detection and diagnosis (FDD) in mechanical 

systems. Traditional FDD methods have struggled 

with limitations such as delayed fault detection, high 

rates of false alarms, and inability to adapt to new or 

evolving system configurations. This research aims to 

address these challenges by: 

 

❖ Identifying and implementing suitable ML 

models that can accurately predict faults in 

mechanical systems based on sensor data. 

❖ Comparing the performance of these models 

against traditional FDD methods.  

❖ Developing a framework for the efficient 

integration of ML-based FDD systems in 

industrial environments. 

Data Collection Process 

The data collection process is crucial for the successful 

application of ML in FDD. In this study, data is 
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collected from various sensors embedded in 

mechanical systems, including: 

Vibration sensors: For capturing the mechanical 

vibrations and identifying imbalances or 

misalignments. 

Temperature sensors: To monitor thermal conditions, 

useful in detecting overheating or insulation failures. 

Pressure sensors: For systems involving fluid dynamics, 

such as pumps and hydraulic systems, to detect leaks 

or blockages. 

The data types collected include time-series 

measurements, which are continuous readings taken 

over time, and discrete event data, such as error codes 

or system alerts. The environments from which data is 

collected range from controlled laboratory settings, 

simulating specific fault conditions, to real-world 

industrial environments, offering a broader spectrum 

of operational conditions and potential fault scenarios. 

Data Preprocessing 

Data preprocessing involves several steps to prepare 

the raw sensor data for analysis by ML models: 

Cleaning: Removing outliers and correcting errors in 

the data, such as mislabeled readings or sensor 

malfunctions. 

Normalization: Scaling the data to a specific range, 

such as -1 to 1, to ensure that the model treats all 

features equally. 

Feature extraction: Transforming raw data into a set of 

features that can effectively represent the system's 

state. For time-series data, this might include 

statistical features (mean, variance) and frequency-

domain features (Fourier transforms). 

Windowing: Segmenting the time-series data into 

fixed-size windows, allowing the model to analyze 

data points in context rather than in isolation. 

ML Model Selection and Architecture 

For this study, multiple ML models are considered, 

each selected based on their suitability for different 

types of FDD tasks: 

Decision Trees: Chosen for their interpretability and 

ease of use in classifying simple fault conditions. 

Convolutional Neural Networks (CNNs): Selected for 

their ability to process spatial data, making them ideal 

for analyzing images or complex signal patterns. 

Recurrent Neural Networks (RNNs): Utilized for their 

strength in handling sequential data, such as time-

series sensor readings. 

Each model's architecture is tailored to the specific 

features of the data it analyzes. For example, CNNs 

might use layers of convolutional and pooling 

operations to extract and condense information from 

input data, while RNNs might employ LSTM (Long 

Short-Term Memory) units to retain information 

across long sequences. 

Training Process and Evaluation Metrics 

The training process involves feeding the prepared 

data into the ML models and adjusting their 

parameters to minimize prediction errors. A cross-

validation approach is used, where the dataset is 

divided into training and validation sets, to evaluate 

model performance iteratively during training. The 

main evaluation metrics include: 

Accuracy: The proportion of correctly identified fault 

conditions. 

Precision and Recall: Measures of the model's ability 

to correctly identify positive cases without 

misclassifying negative cases. 

F1 Score: A combined measure of precision and recall, 

providing a single metric to assess model performance. 

Model Validation and Addressing Overfitting 

Model validation is conducted using a separate test 

dataset not seen by the model during training. This 

step ensures that the model's performance is 

generalizable to new data. To address overfitting, 

techniques such as dropout (for neural networks), 

pruning (for decision trees), and regularization are 

applied. Overfitting occurs when a model learns the 

training data too well, including its noise and outliers, 

leading to poor performance on new data. 

Regularization techniques add a penalty on larger 

weights, and dropout randomly ignores some neurons 

during training, both encouraging simpler models that 

generalize better. 
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V. CASE STUDIES / APPLICATIONS 

 

In the realm of machine learning (ML) applications 

for fault detection and diagnosis (FDD) in mechanical 

systems, a series of case studies underscore the 

transformative potential of these technologies. Each 

case study highlights unique challenges and solutions, 

offering insights into the broader applicability and 

impact of ML on predictive maintenance strategies. 

One notable case involves the implementation of 

supervised learning techniques for gearbox fault 

detection in wind turbines. Wind turbines, pivotal in 

renewable energy generation, face significant 

maintenance challenges, particularly with gearbox 

components. Utilizing vibration and acoustic emission 

data, algorithms such as Support Vector Machines 

(SVM) were deployed to classify operational states as 

normal or faulty. The SVM model, chosen for its 

robustness and precision, demonstrated a notable 

improvement in fault detection accuracy over 

traditional methods, showcasing the efficiency of ML 

in reducing false positives and enhancing predictive 

maintenance capabilities. 

Another case study centers on the predictive 

maintenance of Heating, Ventilation, and Air 

Conditioning (HVAC) systems through deep learning 

models, specifically Convolutional Neural Networks 

(CNN). HVAC systems, essential for ensuring indoor 

air quality and comfort, are susceptible to failures that 

can disrupt their operation. By analyzing time-series 

data from temperature and pressure sensors, CNNs 

were employed to detect anomalies indicating 

potential compressor failures or refrigerant level issues. 

This approach enabled the identification of faults up 

to 72 hours in advance, significantly minimizing the 

risk of system failure and maintenance costs. The 

successful application of CNNs in this context 

illustrates the power of deep learning in processing 

complex data patterns and predicting future system 

behaviors. 

These case studies, among others, contribute 

significantly to our understanding of ML applications 

in FDD across various mechanical systems. The 

comparison between supervised learning in wind 

turbine maintenance and deep learning in HVAC 

system monitoring reveals the importance of selecting 

appropriate ML models based on the specific 

characteristics of the data and the nature of the faults. 

While the former emphasizes the value of precision 

and reducing unnecessary maintenance actions, the 

latter highlights the capability of ML to handle large-

scale and complex data sets for predictive purposes. 

The practical implications of these applications are 

vast, ranging from enhanced operational efficiency 

and safety to cost savings and extended equipment 

lifespans. However, challenges such as data quality, 

model interpretability, and integration into existing 

maintenance workflows remain. Addressing these 

challenges through continued research and 

development is essential for the widespread adoption 

and optimization of ML-based FDD systems. Future 

research directions may include exploring hybrid ML 

models that combine the strengths of various 

approaches, enhancing model interpretability for 

better decision-making, and tailoring solutions to 

specific industry needs, further solidifying the role of 

ML in revolutionizing predictive maintenance 

practices. 

 

VI. RESULTS & DISCUSSION 

 

The exploration into machine learning (ML) 

applications for fault detection and diagnosis (FDD) in 

mechanical systems has yielded insightful findings, 

underlining the profound impact of ML on enhancing 

predictive maintenance. The synthesis of literature 

review, theoretical exploration, and case studies 

reveals a significant shift from traditional FDD 

methods towards more advanced, data-driven ML 

approaches. These approaches not only promise 

increased accuracy in fault detection but also 

proactively address potential failures, thereby 

ensuring operational efficiency and system reliability. 
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Our investigation into supervised and unsupervised 

learning models, alongside deep learning techniques, 

illustrates the versatility and adaptability of ML in 

tackling diverse FDD challenges across various 

mechanical systems. The case studies, focusing on 

wind turbine gearbox faults and HVAC system 

maintenance, exemplify the practical benefits of ML 

in real-world settings. These include the ability to 

predict faults well in advance, minimize false alarms, 

and consequently reduce unnecessary maintenance 

activities. Such advancements highlight the critical 

role of ML in transitioning from reactive to predictive 

maintenance strategies, ultimately leading to 

significant cost savings and enhanced system 

longevity.  

 

 
Figure 1: Accuracy Comparison of ML Models 

 
Figure 2: F1 Score Comparison Across Different Fault 

Types 

 

Figure 1 displays a bar chart comparing the accuracy 

of three different machine learning models: Support 

Vector Machine (SVM), Decision Trees, and 

Convolutional Neural Networks (CNN), in fault 

detection tasks within mechanical systems. The Y-axis 

represents the accuracy percentage, ranging from 0 to 

100%. The chart illustrates that CNNs achieved the 

highest accuracy, followed by SVMs and then 

Decision Trees, highlighting the effectiveness of deep 

learning techniques in complex fault diagnosis 

scenarios. 

Figure 2 presents a comparison of the F1 scores 

achieved by SVM, Decision Trees, and CNN models 

across three distinct fault types identified in 

mechanical systems. The F1 score, a measure of a 

model's accuracy in terms of precision and recall, 

ranges from 0 to 1, with 1 indicating perfect precision 

and recall. The bar chart reveals varying performances 

of the models across different fault types, 

underscoring the importance of model selection based 

on the specific characteristics of the fault being 

detected. 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

397 

 
Figure 3: Reduction in Maintenance Costs 

 

Figure 3 showcases the percentage reduction in 

maintenance costs achieved by transitioning from 

traditional FDD methods to ML-based FDD 

approaches. The bar chart compares the cost reduction 

percentages between traditional methods and ML-

based strategies, indicating a significant decrease in 

maintenance costs when employing machine learning 

for fault detection and diagnosis. This visualization 

underscores the economic benefits of adopting ML 

technologies in maintenance practices. 

 

 
Figure 4: Detection Time Comparison 

Figure 4 compares the time taken by SVM, Decision 

Trees, and CNN models to detect faults in real-time 

scenarios, measured in seconds. The bar chart 

illustrates that CNNs offer the fastest fault detection 

times, followed by SVMs and Decision Trees. This 

efficiency in detection time is crucial for timely 

interventions and reducing the potential impact of 

mechanical failures. 

 
Figure 5: False Positive Rates of ML Models 

Figure 5 illustrates the false positive rates of SVM, 

Decision Trees, and CNN models in fault detection 

tasks. The Y-axis represents the false positive rate, 

highlighting the proportion of false alarms raised by 

each model. A lower rate indicates higher precision in 

fault detection. The chart demonstrates that CNNs 

have the lowest false positive rate, followed by SVMs 

and Decision Trees, suggesting that CNNs not only 

excel in accuracy but also in maintaining a low rate of 

false alarms. 

However, the journey towards fully integrating ML 

into FDD processes is not devoid of challenges. Key 

issues such as the need for vast amounts of high-

quality, labeled data, the complexity and "black box" 

nature of some ML models, and the integration 

hurdles with existing industrial infrastructure present 

notable obstacles. Moreover, the varying success rates 

of different ML models, as demonstrated in the case 

studies, underscore the importance of model selection, 

tailored to the specific characteristics and 

requirements of each application. 

The implications of these findings extend beyond the 

technical realm, suggesting a paradigm shift in how 

industries approach maintenance and reliability 
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engineering. As ML technologies continue to evolve, 

the potential for their application in FDD is vast, 

promising not only improvements in existing systems 

but also the innovation of new predictive 

maintenance solutions. 

Looking ahead, several avenues for future research 

emerge from our study. These include the 

development of more sophisticated ML algorithms 

that require less labeled data, improving the 

interpretability of deep learning models for better 

decision-making, and exploring hybrid approaches 

that combine the strengths of different ML techniques. 

Additionally, the integration of ML models with 

emerging technologies such as the Internet of Things 

(IoT) and edge computing could further enhance real-

time FDD capabilities, opening new frontiers in 

predictive maintenance. 

In conclusion, the integration of ML into FDD 

represents a significant advancement in the field of 

mechanical systems maintenance. By addressing 

current limitations and harnessing emerging 

technologies, future research can further enhance the 

efficacy, efficiency, and applicability of ML-based 

FDD, paving the way for more reliable, cost-effective, 

and sustainable industrial operations. 

 

VII. CONCLUSION AND FUTURE WORK 

 

This research paper has delved into the integration of 

machine learning (ML) techniques in fault detection 

and diagnosis (FDD) within mechanical systems, 

marking a significant advancement in the field of 

predictive maintenance. Through a detailed literature 

review, theoretical exploration, and the examination 

of practical case studies, we have highlighted the 

transformative potential of ML in overcoming the 

limitations of traditional FDD methods. Our findings 

demonstrate that ML not only enhances the accuracy 

and efficiency of fault detection but also facilitates a 

shift towards proactive maintenance strategies, 

significantly improving system reliability and 

operational efficiency. 

The practical applications of ML in FDD, illustrated 

through case studies on wind turbines and HVAC 

systems, underscore the versatility of ML approaches 

in addressing diverse maintenance challenges across 

various industries. These applications reveal the 

benefits of predictive maintenance, including reduced 

downtime, decreased maintenance costs, and extended 

equipment lifespans. However, challenges such as data 

quality and availability, model interpretability, and 

the integration of ML models into existing industrial 

processes remain significant hurdles to the widespread 

adoption of ML-based FDD solutions. 

Future research in this field is ripe with opportunities 

to further refine and enhance the capabilities of ML 

for FDD. Priorities include the development of 

algorithms that require less labeled data, thereby 

overcoming one of the primary limitations of 

supervised learning models. Additionally, advancing 

the interpretability of ML models, particularly those 

based on deep learning, will be crucial for gaining the 

trust and understanding of maintenance professionals 

and decision-makers. Exploring hybrid models that 

combine the strengths of various ML approaches could 

offer more robust and adaptable solutions to FDD 

challenges. 

Moreover, the integration of ML with emerging 

technologies such as the Internet of Things (IoT) and 

edge computing presents a promising avenue for real-

time, on-device FDD, reducing latency and improving 

the responsiveness of maintenance interventions. 

Tailoring ML-based FDD solutions to specific industry 

needs and operational contexts will also be essential 

for maximizing their practical impact. 

In conclusion, the application of ML in FDD for 

mechanical systems represents a significant leap 

forward in the pursuit of more reliable, efficient, and 

cost-effective maintenance strategies. By addressing 

the current challenges and exploring new research 

directions, the field is well-positioned to unlock even 

greater potential of ML in transforming predictive 

maintenance practices across a wide range of 

industrial applications. 
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